關於 cookie 的說明

本網站使用瀏覽器紀錄 (Cookies) 來提供您最好的使用體驗,我們使用的 Cookie 也包括了第三方 Cookie。相關資訊請訪問我們的隱私權與 Cookie 政策。如果您選擇繼續瀏覽或關閉這個提示,便表示您已接受我們的網站使用條款。

搜尋結果Search Result

符合「Bitdeer Technologies Group」新聞搜尋結果, 共 2 篇 ,以下為 1 - 2 篇 訂閱此列表,掌握最新動態
Bitdeer AI 利用無伺服器運算基礎架構推出先進人工智能訓練平台,實現可擴展的高效人工智能/機器學習推理

新加坡, Aug. 20, 2024 (GLOBE NEWSWIRE) -- 領先的人工智能雲服務供應商 Bitdeer Technologies Group (NASDAQ: BTDR) 旗下 Bitdeer AI 宣佈推出先進的人工智能訓練平台,旨在利用無伺服器運算基礎架構提供快速、可擴展的人工智能/機器學習推理服務。憑藉最新的人工智能訓練平台,Bitdeer AI 躋身亞洲首批同時提供雲服務和人工智能訓練平台的 NVIDIA 雲服務供應商 (CSP)。 通過 Bitdeer AI 訓練平台,人人皆能以項目為基礎應用筆記本與組織資源,大規模構建、訓練和微調人工智能模型。該創新平台基於預設指南和可訂製參數,簡化了開發和完善人工智能模型的過程,擴大了模型的適用人群。同一公司內的不同團隊還可以通過該平台協作構建和開發人工智能模型,而無需管理各自的伺服器,提升效率和性能的新標淮。 高性能人工智能基礎架構 新發佈的平台可無縫訪問高性能人工智能基礎架構以及配備 H100 圖形處理器 (GPU) 的 NVIDIA DGX SuperPOD、DDN 存儲和 InfiniBand 網絡的資源。平台還通過在不同伺服器上同時使用多個圖形處理器,提高了人工智能/機器學習訓練流程的效率和可擴展性。通過在多個圖形處理器上分配工作負載,Bitdeer AI 的服務可以處理大量複雜的訓練任務,這對於旨在加快推進人工智能計劃的企業無疑是最佳選擇。 應對業務的關鍵挑戰 優化開發成本:有了 Bitdeer AI,企業可以通過「即用即付」的模式優化成本,只在手提電腦處於服務模式時才收取費用。這種方法確保機構只需為其使用的資源付費,從而提升人工智能開發的成本效益。   簡化複雜的圖形處理器基礎架構設置:無伺服器基礎架構為機器學習提供了全面的集成開發環境,其中包括預設算法和對 TensorFlow 和 PyTorch 等流行框架的支援。這大大減少了開發和訓練機器學習模型所需的複雜度和時間,簡化了人工智能開發流程。 確保可重複性和環境一致性:Bitdeer AI 可確保構建環境的一致性和可重複性,這對管理機器學習模型的部署至關重要。此一致性可防止在重新啟動持續集成/持續交付作業,或是從一個平台遷移到另一個平台時出現預料之外的錯誤,避免在長期運行的機器學習作業中出現代價高昂的構建錯誤。 Bitdeer AI 與新加坡管理大學計算機與資訊系統學院的軟件工程團隊合作,對平台進行測試、驗證和微調,確保其穩健性和有效性。展望未來,Bitdeer AI 計劃與 NVIDIA 合作,通過與 NIM 等 NVIDIA AI Enterprise (NVAIE) 雲服務集成來增強人工智能訓練平台。此次合作將助力企業高效地訂製、測試和擴展人工智能代理,進一步鞏固 Bitdeer AI 提供頂級人工智能解決方案的承諾。 關於 Bitdeer AI Bitdeer AI 是人工智能/機器學習圖形處理器雲解決方案的領先供應商,致力於為企業提供先進的訓練能力和高性能資源。作為新加坡首家提供雲服務和人工智能訓練平台的 NVIDIA 雲供應商 (NCP),創新解決方案和戰略合作使我們站在了人工智能發展的最前沿,幫助企業加快實施人工智能計劃並實現其目標。請訪問 https://www.bitdeer.ai 獲取更多資訊。 前瞻性陳述 本新聞稿中有關未來預期、計劃和前景的表述,以及有關非歷史事實事項的任何其他表述,可能構成美國《1995 年私人證券訴訟改革法案》定義的「前瞻性表述」。儘管並非所有前瞻性陳述都包含「預計」、「期待」、「相信」、「繼續」、「可能」、「估計」、「期望」、「打算」、「可能」、「計劃」、「潛在」、「預測」、「預計」、「應該」、「目標」、「將」、「會」以及類似的表述,此類識別詞都是為了識別前瞻性陳述。由於各種重要因素的影響,實際結果可能與此類前瞻性陳述所顯示的結果存在實質性差異,這些因素包括 Bitdeer 20-F 表格年度報告中題為「風險因素」一節中討論的因素,以及 Bitdeer 隨後向美國證券交易委員會提交的文件中對潛在風險、不確定性和其他重要因素的討論。本新聞稿中包含的任何前瞻性陳述僅截至本新聞稿發佈之日。Bitdeer 特別聲明,無論是由於新資訊、未來事件或其他原因,其沒有義務更新任何前瞻性聲明。在本頁發佈日期之後,讀者不應將本頁資訊視為最新或準確資訊。 聯絡方式: 媒體聯絡人:Retainna Lin電郵:retainna.lin@bitdeer.com

文章來源 : Notified 發表時間 : 瀏覽次數 : 2950 加入收藏 :
Bitdeer AI Unveils Advanced AI Training Platform with Serverless GPU Infrastructure for Scalable and Efficient AI/ML Inference

SINGAPORE, Aug. 14, 2024 (GLOBE NEWSWIRE) -- Bitdeer AI, part of Bitdeer Technologies Group (NASDAQ: BTDR), a leading AI Cloud service provider, has announced the launch of its advanced AI Training Platform, designed to provide fast and scalable AI/ML inference with serverless GPU infrastructure. With the newest AI Training Platform, Bitdeer AI becomes one of the first NVIDIA Cloud Service Providers (CSP) in Asia to offer both cloud service and an AI training platform. The Bitdeer AI Training Platform empowers everyone to build, train, and fine-tune AI models at scale through notebooks and organized resources on a project basis. Based on the pre-configured guides and customizable parameters, the innovative platform simplifies the process of developing and refining AI models, making them accessible to a wider audience. It further allows different teams within the same organization to collaboratively build and develop AI models without the need to manage their own servers, setting a new benchmark in efficiency and performance. High-Performance AI Infrastructure The newly announced platform offers seamless access to high-performance AI infrastructure and resources of NVIDIA DGX SuperPOD with H100 GPUs, DDN Storage, and InfiniBand Networks. It also improves the efficiency and scalability of AI/ML training processes by utilizing multi-GPUs across various servers simultaneously. By distributing the workload across several GPUs, Bitdeer AI's services can handle extensive and sophisticated training tasks, making it the optimal choice for organizations aiming to accelerate their AI initiatives. Addressing Key Business Challenges Optimizing Development Costs: With Bitdeer AI, businesses can optimize costs through a pay-as-you-go model, only being charged when notebooks are in service mode. This approach ensures that organizations only pay for the resources they use, making AI development more cost-effective.      Simplifying Complex GPU Infrastructure Setups: The serverless infrastructure provides a comprehensive integrated development environment for ML, including pre-built algorithms and support for popular frameworks like TensorFlow and PyTorch. This significantly reduces the complexity and time required to develop and train ML models, streamlining the AI development process. Ensuring Reproducibility and Environment Consistency: Bitdeer AI ensures consistency and reproducibility in the build environment, crucial for managing ML model deployment. This consistency prevents unexpected errors when restarting CI/CD jobs or migrating from one platform to another, avoiding costly build errors in long-running ML jobs. Bitdeer AI collaborated with a software engineering team from the SMU School of Computing and Information Systems to test, verify, and fine-tune the platform, ensuring its robustness and effectiveness. Looking ahead, Bitdeer AI plans to collaborate with NVIDIA to enhance the AI Training Platform by integrating with the NVIDIA AI Enterprise (NVAIE) cloud services such as NIM. This collaboration will enable businesses to customize, test, and scale AI agents efficiently, further solidifying Bitdeer AI's commitment to providing top-tier AI solutions. About Bitdeer AI       Bitdeer AI is a leading provider of AI/ML GPU cloud solutions, dedicated to empowering businesses with advanced training capabilities and high-performance resources. As the first NVIDIA Cloud Provider (NCP) in Singapore to offer cloud services and an AI training platform, our innovative solutions and strategic collaborations position us at the forefront of AI development, helping organizations accelerate their AI initiatives and achieve their goals. For more information, please visit https://www.bitdeer.ai. Forward-Looking Statements Statements in this press release about future expectations, plans, and prospects, as well as any other statements regarding matters that are not historical facts, may constitute “forward-looking statements” within the meaning of The Private Securities Litigation Reform Act of 1995. The words “anticipate,” “look forward to,” “believe,” “continue,” “could,” “estimate,” “expect,” “intend,” “may,” “plan,” “potential,” “predict,” “project,” “should,” “target,” “will,” “would” and similar expressions are intended to identify forward-looking statements, although not all forward-looking statements contain these identifying words. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, including factors discussed in the section entitled “Risk Factors” in Bitdeer’s annual report on Form 20-F, as well as discussions of potential risks, uncertainties, and other important factors in Bitdeer’s subsequent filings with the U.S. Securities and Exchange Commission. Any forward-looking statements contained in this press release speak only as of the date hereof. Bitdeer specifically disclaims any obligation to update any forward-looking statement, whether due to new information, future events, or otherwise. Readers should not rely upon the information on this page as current or accurate after its publication date. Contact: Media Contact: Retainna LinEmail: retainna.lin@bitdeer.com

文章來源 : Notified 發表時間 : 瀏覽次數 : 343 加入收藏 :
2025 年 3 月 16 日 (星期日) 農曆二月十七日
首 頁 我的收藏 搜 尋 新聞發佈